138 research outputs found

    Ionizing Radiation Disinfestation Treatments against Pest Insects

    Get PDF
    Pesticides are often considered a suitable solution for controlling pests. However, the use of chemicals is very costly, and their residues have always the potential to pollute soil, air, and ground water and also pose significant risks to the natural ecosystems and nontarget organisms. Considering all these, irradiation could offer substantial and charming option for eliminating the export commodity fumigation uses for the undesirable effects of chemicals. Gamma rays, high-energy electrons, and X-rays are among the ionizing radiation sources utilized practically in sterile insect releasing programs using “self-contained” and “non-self-contained or panoramic” irradiators. When applying radiation sources, dosimetry should be adjusted to ensure quarantine security for large groups of insect pests. Because of growing concerns related to health problems and environmental pollutions, chemical sanitizing treatments are faced with a lot of regulatory restrictions, so irradiation reveals best choice for this purpose. The sterile insect technique (SIT) may have indispensable consideration for integrated pest management (IPM) of many important insect pests, including agricultural, veterinary, and medicinal importance. On the other hand, to overcome the obstacles of SIT treatments, genetic engineering techniques were supposed to ease the development of transgenic insects for sustainable tactics to control pest populations. Thus, genetic means should be an integral part of SIT treatments in controlling important pest populations

    Insecticidal Activity of the Essential Oils from Different Plants Against Three Stored-Product Insects

    Get PDF
    This study was conducted to determine the insecticidal activity of essential oils from oregano, Origanum onites L. (Lamiales: Lamiaceae), savory, Satureja thymbra L. (Lamiales: Lamiaceae), and myrtle, Myrtus communis L. (Rosales: Myrtaceae) against three stored-product insects. Essential oils from three species of plants were obtained by Clevenger-type water distillation. The major compounds in these essential oils were identified using gas chromatography-mass spectrometry and their insecticidal activity was tested against adults of the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), the Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae) and the bean weevil Acanthoscelides obtectus Say (Coleoptera: Bruchidae). While the major compound found in oregano and savory was carvacrol, the main constituent of the myrtle was linalool. Among the tested insects, A. obtectus was the most tolerant species against the essential oils. However, the insecticidal activity of the myrtle oil was more pronounced than other oils tested against A. obtectus adults. The essential oils of oregano and savory were highly effective against P. interpunctella and E. kuehniella, with 100% mortality obtained after 24 h at 9 and 25 µl/l air for P. interpunctella and E. kuehniella, respectively. LC50 and LC99 values of each essential oil were estimated for each insect species
    corecore